A combined numerical and experimental framework for determining permeability properties of the arterial media.

نویسندگان

  • A Comerford
  • K Y Chooi
  • M Nowak
  • P D Weinberg
  • S J Sherwin
چکیده

The medial layer of the arterial wall may play an important role in the regulation of water and solute transport across the wall. In particular, a high medial resistance to transport could cause accumulation of lipid-carrying molecules in the inner wall. In this study, the water transport properties of medial tissue were characterised in a numerical model, utilising experimentally obtained data for the medial microstructure and the relative permeability of different constituents. For the model, a new solver for flow in porous materials, based on a high-order splitting scheme, was implemented in the spectral/hp element library nektar++ and validated. The data were obtained by immersing excised aortic bifurcations in a solution of fluorescent protein tracer and subsequently imaging them with a confocal microscope. Cuboidal regions of interest were selected in which the microstructure and relative permeability of different structures were transformed to a computational mesh. Impermeable objects were treated fictitiously in the numerical scheme. On this cube, a pressure drop was applied in the three coordinate directions and the principal components of the permeability tensor were determined. The reconstructed images demonstrated the arrangement of elastic lamellae and interspersed smooth muscle cells in rat aortic media; the distribution and alignment of the smooth muscle cells varied spatially within the extracellular matrix. The numerical simulations highlighted that the heterogeneity of the medial structure is important in determining local water transport properties of the tissue, resulting in regional and directional variation of the permeability tensor. A major factor in this variation is the alignment and density of smooth muscle cells in the media, particularly adjacent to the adventitial layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Mathematical Model for Permeability of Composites

Study of permeability of Fibrous Composites is important in several natural and industrial processes in mechanical engineering. In this study, a comprehensive mathematical model is presented for calculation of normal permeability of ordered elliptical fibrous media. An innovative scale-analysis technique is employed for determining the normal permeability of elliptical fibrous media. In this te...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

A Numerical Modeling Study for Determining the Optimal Depth of Grout Curtain in Foundation and Abutments of Karun 4 Dam

Some experimental relations have been developed for determining the grout curtain depth, but these relations cannot be applied to any dam with any geological condition. Therefore, the effect of the grout curtain depth on seepage through foundation and abutments of each dam should be studied separately. To examine this parameter in Karun 4 dam, the numerical modeling method was applied using FLA...

متن کامل

The Effect of Magnet Width and Iron Core Relative Permeability on Iron Pole Radii Ratio in Spoke-Type Permanent-Magnet Machine: An Analytical, Numerical and Experimental Study

In this paper, we present a mathematical model for determining the optimal radius of the iron pole shape in spoke-type permanent-magnet (PM) machines (STPMM) in order to minimize the pulsating torque components. The proposed method is based on the formal resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative permeability effect o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2015